	Ratio - Part 2
	Rate:
1	
1.	Definition : A rate is a special type of ratio that compares two quantities with different units. It represents the amount of one quantity relative to another quantity.
2. 3.	
	Example : Miles per hour (mph), liters per minute (L/min), and dollars per pound (\$/lb) are examples of rates.
4.	
	Proportion:
1.	
2.	Definition : A proportion is an equation that states two ratios are equal.
	• If :=: \(\subseteq \subseteq \subsete \), then \(\subseteq \is \to \subsete \) as \(\subsete \is \to \) and we say that \(\subsete \) is proportional to \(\subsete \).
3.	
	Proportionality : In a proportion, the product of the means (inner terms) is equal to the product of the extremes (outer terms).
4.	• × = × _x = _x × _
	Scaling:
1.	
	Definition : Scaling involves multiplying or dividing all parts of a ratio by the same number to change its size while maintaining the same relationship between the quantities.
2.	• Example: If the ratio of boys to girls in a classroom is 3:53:5, scaling it up by a factor of 2 results in a ratio of 6:106:10, which still represents the same ratio of boys to girls.
	Examples:
1	
т.	

Recipe Ratios: In a recipe that calls for 2 cups of flour and 1 cup of sugar, the ratio of flour to sugar is 2:12:1.

3.

Speed: If a car travels 60 miles in 2 hours, the speed is $602=30_{260}=30$ miles per hour.

4.

5.

Proportional Relationships: If a car travels 120 miles in 4 hours and another car travels 180 miles in 6 hours, their speeds are in the same ratio, indicating a proportional relationship.

6.

Applications:

1.

Scaling Models: Ratios and proportions are used in scaling models of buildings, maps, and other structures to represent real-world measurements accurately.

2.

3.

Finance: Rates and ratios are used in finance to analyze investments, interest rates, and financial performance metrics.

4.

5.

Cooking: Ratios are commonly used in cooking to scale recipes up or down based on the desired number of servings.

6.

Conclusion:

Understanding ratios, rates, proportions, and scaling is crucial in various real-world applications, including cooking, construction, finance, and more. These concepts provide a framework for comparing quantities, analyzing relationships, and making informed decisions. By mastering the principles of ratios and their applications, individuals can solve a wide range of problems and effectively navigate various situations in everyday life and professional contexts.