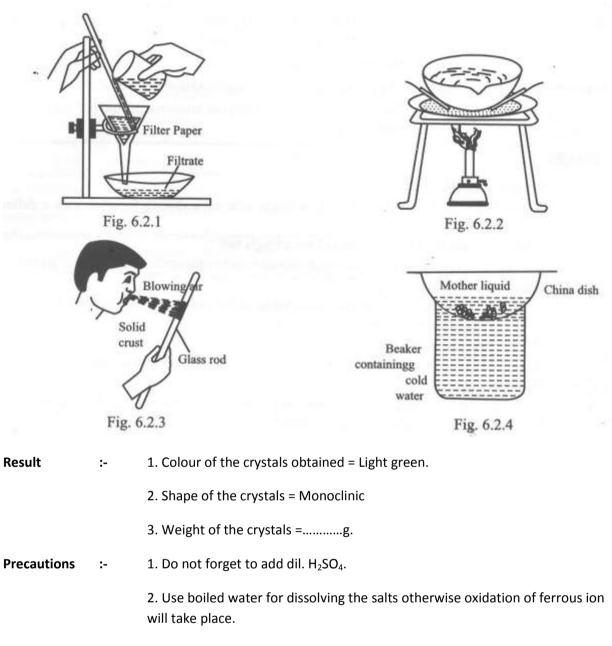


Chemistry Practical Index

Class-XII Term-II (2021-22)

S.No.	Experiment	Date	Page	Signature
1	To prepare a pure sample of ferrous ammonium sulphate			
2	Oxidation – Reduction			
3	Oxidation – Reduction			
4	Identification of Radical [Zn ⁺⁺ CH ₃ COO ⁻]			
5	Identification of Radical [Ca ⁺⁺ Co ₃ ²⁻]			
6	Identification of Radical [Mg ⁺⁺ l ⁻]			
7	Identification of Functional group [Alcohal]			
8	Identification of Functional group [Phenol]			
10	Identification of Functional group [Aldehyde]			
10	Identification of Functional group [Ketone]			
11	Identification of Functional group[Carboxilic acid]			
12	Identification of Functional group [Amine]			

** Write Calculation of Exp. No. 2 & 3 in front of Observation Table on the Blank Page.


** Write Reaction of Exp. No. 4 to 12 in front of Observation Table on the Blank Page.

To prepare a pure sample of ferrous ammonium sulphate (Mohr's salt)

AIM	•_	To prepare a pure sam	nle of forrous ar	monium sulphate
	:-	To prepare a pure sam	pie of ferrous al	
Apparatus	:-	Two 250 ml beakers, china dish, funnel, funnel stand, glass rod, tripod stand, wash bottle, wire gauze.		
Chemicals	:-	Ferrous sulphate (7g), Ammonium sulphate (3.5g), Dilute H_2SO_4 (2-3 ml).		
Theory	:-	Mohr's salt is prepared by dissolving equimolar amounts of hydrated ferrous sulphate and ammonium sulphate in minimum quantity of water containing little dilute sulphuric acid. The resultant solution is filtered to remove impurities and evaporated till crystallization point is reached. Cooling of this hot saturated solution yields light bluish green crystals which are separated from the mother liquor and dried.		
		$F_e SO_4 7H_2 O + (NH_4)$	$SO_4 \rightarrow FeSO_4$	$(NH_4)_2 SO_4 6H_2 O + H_2 O$
		278g	132g	392g
Procedure	:-	1. Take a 250ml beaker sulphate crystal to it.	r. Transfer 7g fei	rrous sulphate and 3.5g ammonium
		2. Add about 2-3ml of a sulphate.	dilute sulphuric	acid to prevent hydrolysis of ferrous
		3. In another beaker bo dissolved air.	oil about 20ml o	f water for about 5 minutes to expel
		4. Add the boiling hot v beaker.	water in small in	stalment to the contents in the first
		5. Stir the contents wird dissolved.	th a glass rod ur	til the salts have completely
		6. Filter the solution to filtrate to a china dish.		olved impurities and transfer the
		7. Heat the solution in	the china dish ti	ill saturated point.
				cool by placing the china dish over a ing, crystals of Mohr's salt separated
		9. Decant off the moth	er liquor and wa	ash the crystals with ethyl alcohol.

10. Dry the crystals between the folds of filter paper. Note the colour and shape.

11. Weigh the crystals on a rough balance.

3. Use only green coloured ferrous sulphate.

Oxidation – Reduction Titration

- **AIM:-** To prepare 250 ml of M/30 standard solution of F.A.S. Using this solution find out the molarity and strength of the given KMnO₄ solution.
- **Theory** :- KMnO₄ oxidises fe⁺⁺ ions into fe⁺⁺⁺ ions in acidic medium in cold and itself reduced to colourless Mn⁺⁺ ions

2 KMnO₄ + 10 Fe SO₄ (NH₄)₂ SO₄ 6H₂O + 8H₂SO₄ \rightarrow K₂SO₄+ 2MnSO₄ + 5 Fe₂(SO₄)₃ + 10 (NH₄)₂ SO₄+ 68 H₂O

Or

 $MnO_4^- + 5 fe^{++} + 8 H^+ \rightarrow Mn^{++} + 5 fe^{+++} + 4 H_2 O$ Molecular Mass of KMnO₄ = 158 Molecular Mass of F.A.S. = 392 Mass of required FAS for preparing 250 ml of

M/30 solution = $\frac{392}{30} \times \frac{250}{1000}$ = 3.26 gm

- Apparatus: Chemical balance, weight box, watch glass, measuring flask, funnel, burette, pipette, conical flask, tile, burette stand etc.
- Materials- F.A.S Crystals (Mohr's Salt), Dilute H₂SO₄, Distilled H₂O, KMnO₄ solution.
- **Indicator** KMnO₄ solution act as a self indicator.
- End point colourless to Permanent pink

Observation – (i) Mass of watch glass (a) = 35.700 gm

- (ii) Mass of mohr's salt required (b) = 3.26 gm
- (iii) Mass of (a) + (b) = 38.960 gm
- (iv) Volume of mohr's salt solution prepared = 250 ml
- (v) Molarity of mohr's salt solution = M/30

Observation table –

	Volume of	Re	Reading of KMnO ₄ solution		
S.N.	F.A.S. Solution(v ₁ ml)	Initial (a) (ml)	final (b) (ml)	Used (b-a) (ml)	volume of KMnO ₄ (V ₂ ml)
1	20 ml	0.0	17.1	17.1	
2	20 ml	0.0	16.8	16.8	16.8 ml
3	20 ml	0.0	16.8	16.8	

Calculations- (A) Molarity of $KMnO_4$ solution $(M_2) = ?$. Using formula

 $M_1v_1 = 5 M_2V_2$

$$M_{2} = \frac{M_{1}V_{1}}{5 \times V_{2}} = \frac{1}{30} \times \frac{20}{5 \times 16.8}$$

$$M_{1} = M/30$$

$$V_{1} = 20 \text{ MI}$$

$$M_{2} = 0.0079 \text{ M}$$

$$M_{2} = ?$$

$$V_{2} = 16.8 \text{ mI}$$

(due to 2 moles of KMnO₄ reacts with 10 moles of FAS in overall balance equation)

- **(B)** Strength of $KMnO_4$ Solution in gm \lit = ?
 - = molarity (M_2) × molecular mass

= 0.0079 × 158

= 1.2482 gm /lit

Result -(1)Molarity of the given $KMnO_4$ solution = 0.0079 M

Strength of the given $KMnO_4$ solution = 1.2482 gm/lit. (2)

Precaution

- If the volumetric apparatus should be washed well before use. (i)
- (ii) Rinse burette with the solution of KMnO₄ and pipette with the solution of FAS. And wash the titration flash with distilled H₂O after every titration
- (iii) Always read the upper meniscus in case of coloured solutions.
- (iv) Always use freshly prepared KMnO₄ as it decomposed on keeping.
- (v) Excess of dilute H₂SO₄ should be add in FAS.

Oxidation – Reduction Titration

AIM:- To prepare 250 ml of M/30 standard solution of Oxalic acid. Using this solution, find out the Molarity and strength of the given KMnO₄ solution.

Theory – $KMnO_4$ Oxidises Oxalic acid into CO_2 in acidic medium at a temperature around 60^0 c and itself

get reduced to colourless Mn⁺⁺ ions 2 KMnO₄ + 3 H₂ SO₄ +5 (COOH)₂ \rightarrow K₂SO₄ + 2 MnSO₄ + 10 CO₂ + 8 H₂O **OR** 2 MnO₄⁻ + 16H⁺ + 5 C₂O₄⁻² \rightarrow 2 Mn⁺⁺ + 8 H₂O + 10 CO₂ Molecular mass of kMnO₄ = 158 Molecular mass of Oxalic acid = 126 Mass of required Oxalic acid for preparing 250 ml of M/30 solution = $\frac{126}{30} \times \frac{250}{1000}$ = 1.05 gm

- Apparatus: Chemical balance, weight box, watch glass, measuring flask, funnel, burette, pipette, conical flask, tile, burette stand etc.
- Materials- Hydrated oxalic acid Crystals (Mohr's Salt), dilute H₂SO₄, distilled H₂O, KMnO₄ solution.
- Indicator KMnO₄ solution act as a self indicator.
- End point Colourless to Permanent pink

Observation – (i) Mass of watch glass (a) = 36.700 gm (ii) Mass of required oxalic acid (b) = 1.05 gm (iii) Mass of (a) + (b) = 37.750 gm (iv) Volume of oxalic acid solution prepared = 250 ml (v) Molarity of oxalic acid solution = M/30

Observation table –

	Volume of	Reading of KMnO ₄ solution			Concordant
S.N.	oxalic acid Solution(v ₁ ml)	Initial (a) (ml)	final (b) (ml)	Used (b-a) (ml)	volume of KMnO ₄ (V ₂ ml)
1	20 ml	0.0	18.1	18.1	
2	20 ml	0.0	17.8	17.8	17.8 ml
3	20 ml	0.0	17.8	17.8	

Calculations- (A) Molarity of $KMnO_4$ solution $(M_2) = ?$

Using formula $2M_1v_1=5M_2V_2$

$$M_{2} = \frac{2M_{1}V_{1}}{5V_{2}}$$

$$M_{2} = \frac{2}{30} \times \frac{20}{5 \times 17.8}$$

$$M_{1} = M/30$$

$$V_{1} = 20 \text{ ml}$$

$$M_{2} = ?$$

$$V_{2} = 17.8 \text{ ml}$$

M₂ = 0.0149 M

(due to 2 mole of Kmno₄ reacts with 5 moles of oxalic acid in overall balance equation)

(B) Strength of KMnO₄ Solution in gm/lit

= Molarity (M₂) × molecular mass.
 = 0.0149 × 158
 = 2.3542 gm/lit

- **Result** (A) The Molarity of the given $KMnO_4$ solution = 0.0149 M
 - (B) The Strength of the given $KMnO_4$ solution = 2.3542 gm/lit

Precautions

- (i) All the volumetric apparatus should be washed well before use.
- $\begin{array}{ll} \mbox{(ii)} & \mbox{Rinse burette with the solution of oxalic acid and pipette with the solution of oxalic acid and wash the titration flash with distilled H_2O after every titration \\ \end{array}$
- (iii) Always read the upper meniscus in case of coloured solution.
- (iv) Always use freshly prepared KMnO₄ as it decomposes on keeping.
- (v) Dilute H_2SO_4 should be add in oxalic acid solution.
- (vi) Heat the conical flask should be slowly on a wire gauze unit the moisture appears on the neck of the flask, the temperature of the solution should be between $60^{\circ} 70^{\circ}$ c

AIM – Analayse the given inorganic salt for one anion and one cation.

Preliminary Investigations –

State – solid Colour – White Odour – Vinegar like Solubility in H₂O –soluble

Test for Anion

S.N	Experiment	Observations	Inference
1	Salt + Dil $H_2 SO_4$	Vinegar like smell	Weak group present
		comes in the solution	CH ₃ COO ⁻ may be
2	Palm test	Vinegar like Smell	CH ₃ COO ⁻ confirmed
	Take salt a palm mix it with oxalic		
	acid + H_2O Rub the paste and smell		
3	Ester Test	Pleasant fruity smell of	CH ₃ COO ⁻ confirmed
	Salt solution + C_2H_5 OH + 2-4 drop of	ester	
	conc. $H_2SO_4 \xrightarrow{\Delta}$		
4	FeCl₃ test	Blood red colour	CH ₃ COO ⁻ confirmed
	Salt solution + neutral feCl ₃ solution	solution if obtained	

 $\begin{array}{l} 2 \text{ CH}_3 \text{ COO Na} + \text{H}_2 \text{ SO}_4 \rightarrow 2 \text{ CH}_3 \text{ COOH} + \text{Na}_2 \text{ SO}_4 \\ 2 \text{ CH}_3 \text{ COO Na} + (\text{COOH})_2 \rightarrow (\text{ COONa})_2 + 2 \text{ CH}_3 \text{ COOH} \\ \text{CH}_3 \text{ COONa} + \text{C}_2\text{H}_5 \text{ OH} \xrightarrow{\text{H}_+} \text{CH}_3 \text{ COO C}_2 \text{ H}_5 + \text{H}_2 \text{ O} \end{array}$

Test o	Test of cation				
S.N	Experiment	Observations	Inference		
1	Salt + Na OH \rightarrow	No reaction	'O' group Absent		
2 (a)	O.S. of salt + dil HCl \rightarrow	No ppt formed	l Absent		
(b)	Pass H_2S gas in above solution \rightarrow	No ppt formed	II Absent		
(c)	Boil it till H_2S remove and add conc. HNO_3 boil and add NH_4 Cl + NH_4 OH \rightarrow	No ppt Formed	III Absent		
1 (a)	Pass H ₂ s gas in III rd group solution	White ppt is formed	IV group present		
(b)	O.S. of salt+ NaOH	White ppt which is dissolved in excess of NaOH	Zn ⁺⁺ May be		
(C)	O.S. of salt + K ₄ [fe(CN) ₆]	Bluish white ppt is formed	Zn ⁺⁺ confirmed		
(4)	CO(No ₃)₂ test	greenish residue	Zn ⁺⁺ confirmed		

$Zn \ Cl_2 + H_2S \rightarrow Zns + 2 \ HCl$

Result –	Anion –	$CH_3 COO^{-1}$
	Cation –	Zn ⁺⁺

AIM – Analayse the given inorganic salt for one anion and one cation. **Preliminary Investigations** –

State – solid Colour – White Odour – rotten egg Solubility in H_2O –soluble Flame test – Not persistent with brick red

Test for Anion

S.N	Experiment	Observations	Inference		
1 (a)	Salt + dil H_2So_4	Colourless gas with brisk	Weak group present		
		effervescence	CO_3^{2} may be		
(b)	Gas pass in lime water	Turns lime water milky and in	CO_3^{2-} conf.		
		excess amount of gas turns			
		colourless			
(c)	Aqueous solution of salt	White ppt	CO_3^{2-} conf.		
	+ Mg SO ₄				
(d)	Aqueous solution of	Pink colour	CO_3^{2-} conf.		
	salt + phenolphthalein				
C_{2}					

 $\mathsf{Ca} \, \mathsf{CO}_3 + \mathsf{H}_2 \, \mathsf{SO}_4 \qquad \longrightarrow \qquad \mathsf{Ca} \, \mathsf{SO}_4 + \mathsf{H}_2 \, \mathsf{O} + \mathsf{CO}_2 \, \uparrow \\ \overset{\wedge}{\longrightarrow} \qquad \qquad \mathsf{Ca} \, \mathsf{SO}_4 + \mathsf{H}_2 \, \mathsf{O} + \mathsf{CO}_2 \, \uparrow \\ \overset{\wedge}{\longrightarrow} \qquad \mathsf{Ca} \, \mathsf{SO}_4 + \mathsf{H}_2 \, \mathsf{O} + \mathsf{CO}_2 \, \uparrow \\ \overset{\wedge}{\longrightarrow} \qquad \mathsf{Ca} \, \mathsf{SO}_4 + \mathsf{H}_2 \, \mathsf{O} + \mathsf{CO}_2 \, \uparrow \\ \overset{\wedge}{\longrightarrow} \qquad \mathsf{Ca} \, \mathsf{SO}_4 + \mathsf{H}_2 \, \mathsf{O} + \mathsf{CO}_2 \, \uparrow \\ \overset{\wedge}{\longrightarrow} \qquad \mathsf{Ca} \, \mathsf{SO}_4 + \mathsf{H}_2 \, \mathsf{O} + \mathsf{CO}_2 \, \uparrow \\ \overset{\wedge}{\longrightarrow} \qquad \mathsf{Ca} \, \mathsf{SO}_4 + \mathsf{H}_2 \, \mathsf{O} + \mathsf{CO}_2 \, \uparrow \\ \overset{\wedge}{\longrightarrow} \qquad \mathsf{Ca} \, \mathsf{SO}_4 + \mathsf{Co}_2 \, \mathsf{O}_4 + \mathsf{O}_2 \, \mathsf$

$$\begin{array}{cccc} Ca \ (OH)_2 + CO_2 & \rightarrow & Ca \ CO_3 + H_2O & \xrightarrow{+CO2} & Ca \ (HCO_3)_2 \\ Ca \ CO_3 + Mg \ SO_4 & \rightarrow & Mg \ CO_3 \downarrow + Ca \ SO_4 \end{array}$$

 $Ca CO_3 + Mg$ Test for Cation

S.N	Experiment	Observations	Inference
1	Salt + NaOH \rightarrow	No reaction	ʻ0' group Absent
2 (a)	O.S. of salt + dil HCl \rightarrow	No ppt formed	l Absent
(b)	Pass H_2S gas in above solution \rightarrow	No ppt formed	II Absent
3	Boil it till H_2S remove and add conc. HNO_3 boil and add NH_4 Cl + NH_4 OH \rightarrow	No ppt Formed	III Absent
4	Pass H_2S gas in III group solution	no ppt is formed	IV group Absent
5	Boil it till then Smell of H_2 S fallout Add NH_4OH and $(NH_4)_2$ CO_3	H ₂ S remove White ppt is formed	V group Present Ba ⁺⁺ /sr ⁺⁺ /Ca ⁺⁺
6	White ppt dissolved in CH ₃ COOH and divide into three parts		
(a)	I part + K ₂ CrO ₄	Yellow ppt is not formed	Ba ⁺⁺ Absent
(b)	II Part + $(NH_4)_2 SO_4$	White ppt is not formed	Sr ⁺⁺ Absent
(c)	III part + $(NH_4)_2 C_2 O_4$	White ppt is formed	Ca ⁺⁺ Present

 $\begin{array}{cccc} Ca & Cl_2 + (NH_4)_2 & CO_3 & \rightarrow & 2 & NH_4 & Cl + Ca & CO_3 \downarrow \\ Ca & CO_3 + 2 & CH_3 & COOH & \rightarrow & (CH_3COO)_2 & Ca + CO_2 \uparrow + H_2O \\ (CH_3 & COO)_2 & Ca + (NH_4)_2 & C_2 & O_4 \rightarrow Ca & SO_4 & \downarrow + 2 & CH_3 & COO & NH_4 \end{array}$

 $\begin{array}{ccc} \textbf{Result}-& Anion - & CO_3^{2^-}\\ Cation-& Ca^{++} \end{array}$

AIM – Analayse the given inorganic salt for one anion and one cation.

Preliminary Investigations –

(A) Physical state – Solid
 Colour – white
 Odour – odour less
 Solubility in H₂O - Soluble
 Flame test – Persistence grassy green (Apple green)

Test for Anion

S.N	Experiment	Observations	Inference
1	Salt + dil H ₂ So ₄	No reaction	Weak group Absent
2	Salt + conc. $H_2So_4 + \Delta$	Deep violet vapours with pungent smell	Strong group Present I ⁻ May be
3. Ag No ₃ test	Soda extract + dil HNo ₃ + Ag NO ₃	Dark yellow ppt is obtained which is in soluble in NH ₄ OH	I confirmed
4	Cl ₂ water test	Layer of again solvent turns violet	I confirmed

 $\begin{array}{ccc} \mathrm{KI} + \mathrm{H}_2 \, \mathrm{So}_4 & \rightarrow & \mathrm{KH} \, \mathrm{So}_4 + \mathrm{H} \, \mathrm{I} \\ \mathrm{2} \, \mathrm{H} \, \mathrm{I} + \mathrm{H}_2 \, \mathrm{So}_4 & \rightarrow & \mathrm{So}_2 + \mathrm{I}_2 \downarrow + 2 \, \mathrm{H}_2 \mathrm{o} \end{array}$

$$\begin{array}{ccc} K \ I + Ag \ No_3 & \rightarrow & Ag \ I + K \ NO_3 \\ 2 \ K \ I + Cl_2 & \rightarrow & 2 \ K \ Cl \downarrow l_2 \downarrow \end{array}$$

Test for Cation

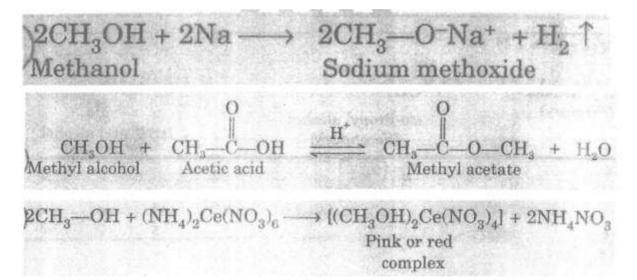
S.N	Experiment	Observations	Inference
1	Salt + NaOH + Δ	No reaction	0 group absent
2	Aqueous solution of salt + dil. HCl	No ppt.	I group absent
3	Pass H ₂ S gas in above solution	No ppt.	II group absent
4	Boil the solution for pass out H_2S gas		
5	Add NH ₄ Cl in presence of NH ₄ OH	No ppt.	III group absent
6	Pass H_2 S gas in above solution	No ppt.	IV group absent
7	Add (NH ₄) ₂ Co ₃ in presence of NH ₄ OH	No ppt.	V group absent
8	Add $Na_2 HPo_4$ in above solution	White ppt is formed	VI group present Mg ⁺⁺ may be
9	White ppt dissolved in NaOH then add titan yellow solution and NaOH in excess	Reddish pink ppt is formed	Mg ⁺⁺ confirmed
10	Cobalt nitrate test \rightarrow	Pink mars is obtained	Mg ⁺⁺ confirmed

 $\underline{Mg} \ \underline{Cl}_2 + \underline{NH}_4 \ \underline{OH} + \underline{Na}_2 \ \underline{HPa}_4 \rightarrow \underline{mg} \ (\underline{NH}_4) \ \underline{Po}_4 \ \downarrow + 2 \ \underline{NaCl} + \underline{H}_2$

 $\begin{array}{ll} \textbf{Result}-& Anion \ I^{*}\\ Cation-Mg^{**} \end{array}$

Aim : To identify functional group in the given organic compound.

Apparatus : Test tube, Glass Rod, Beaker, Dropper, Filter paper, wire gauge, Test tube stand etc. **Chemicals: -** Na metal, cerric Ammonium Nitrate


Physical Properties :

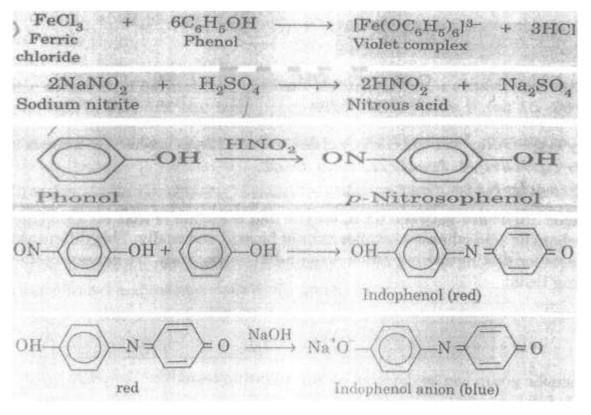
•	1		
(i)	Physical state	\rightarrow	Liquid
(ii)	Smell	\rightarrow	Spirit like.
(iii)	Colour	\rightarrow	Transparent
(iv)	Solubility in water	\rightarrow	Soluble.
(v)	Flame Test	\rightarrow	Aliphatic (Blue flame)

TEST FOR FUNTIONAL GROUP :-

S.N	EXPERIMENT	OBSERVATION	INFERENCE
	Sodium Metal Or xanthate test		
1	Take a little sample in Test tube $+$ small quantity of only cacl ₂ to absorb moisture decant it in another dry test tube and Add a small piece of sodium metal.	Brisk effervescence of Hydrogen Gas	Alcoholic group is present
2	Cerric Ammonium Nitrate Test : Take a little sample in test tube and few drops of cerric ammonium nitrate	Pink or Red colour appears	Alcoholic group is present
3	Ester test :- take a little sample in a test tube and add few drops of acetic acid followed by conc. H_2So_4 + heat	Fruity smell appears due to formation of ester	Alcoholic group is present

Result : - The given organic compound contains Alcoholic (R-OH) group.

Aim : To identify functional group in the given organic compound. **Apparatus :** Test tube, Glass Rod, Beaker, Dropper Filter paper etc. **Chemicals: -** Ferric Chloride, Sodium Nitrate crystals.


Physical Properties :

J	- • r • ·		
(i)	Physical state	\rightarrow	Crystalline solid
(ii)	Smell	\rightarrow	Like litebuoy soap
(iii)	Colour	\rightarrow	colour less
(iv)	Solubility in water	\rightarrow	Soluble.
(v)	Flame Test	\rightarrow	Aromatic (Yellow flames)

TEST FOR FUNTIONAL GROUP :-

S.N	EXPERIMENT	OBSERVATION	INFERENCE
1	Litmus Test - Take little sample	It turns Red	Phenolic group present
	and Blue Litmus in Test tube.		
2	Ferric Chloride Test : Take a	Green or Reddish	Phenolic group present
	little sample in test tube and add	Violet colour	
	few drops of Neutral Ferric		
	Chloride		
3	LIbermann's Test	Red Colour	Phenolic Group is
	Little sample in test tube $+$ conc.		Present
	H_2So_4 + Heat and cool the mixture		
	and add 1-2 crystals of sodium		
	nitrite. Pour this mixture into large		
	quantity of water in a beaker.		

Result : - The given organic compound contains Phenolic(Ar-OH) group.

Aim : To identify functional group in the given organic compound. **Apparatus :** Test tube, Glass Rod Beaker, Dropper Filter paper etc. **Chemicals: -** Alcohol, Tollen's reagent , fehling solution, AgNo₃ solution

Physical Properties :

(i)	Physical state	\rightarrow	Liquid
(ii)	Smell	\rightarrow	Pungent smell
(iii)	Colour	\rightarrow	colour less
(iv)	Solubility in water	\rightarrow	Soluble.
(v)	Flame Test	\rightarrow	Aliphatic (Blue flames)

TEST FOR FUNTIONAL GROUP :-

S.N	EXPERIMENT	OBSERVATION	INFERENCE
1	Schiff's Test : Take a little sample in a test tube and add Schiff's reagent to it.	A deep red or violet colour appears	Aldehyde is present
2	Tollen's reagent Test : Take a little sample in a test tube and add tollen's reagent + heat	Silver mirror is formed along the sides of test tube	Aldehyde is present
3	Fehling's Test Sample + 1 ml fehling A + fehling B solution	Red ppt. appears	Aldehyde is present

Result : - The given organic compound contains Aldehyde (-CHO) group.

)2Ag(NH3)2+	+ CH ₃ CHO + 3OH-	$\longrightarrow CH_3COO^- +$	$-2Ag\downarrow + 4NH_3 + 2H_2O$
	Acetaldehyde	Acetate ion	Silver
RCHO + Aldehyde	2Cu ²⁺ + 5OH ⁻	\longrightarrow Cu ₂ O(s) (Red)	\downarrow + RCOO ⁻ + 3H ₂ O
machyac	Fehling's solution	a para la segurada	

Aim : To identify functional group in the given organic compound.

Apparatus : Test tube, Glass Rod, Beaker, Dropper, Filter paper etc.

Chemicals: - m-di nitrobenzene, sodium nitro prusside solution, 2-4 dinitro phenyl hydrazine

Physical Properties :

(i)	Physical state	\rightarrow	Liquid
(ii)	Smell	\rightarrow	Nail Polish Remover
(iii)	Colour	\rightarrow	colour less
(iv)	Solubility in water	\rightarrow	Soluble.
(v)	Flame Test	\rightarrow	Aliphatic (Blue flames)

TEST FOR FUNTIONAL GROUP :-

S.N	EXPERIMENT	OBSERVATION	INFERENCE
1	2. 4 DNP Test :	Yellow or Orange soln.	Ketonic group present
	Sample + alcohol and add 2, 4		
	dinitro phenyl Hydrazine to it		
	and shake		
2	m-dinitrobenzene Test :	Violet colour	Ketonic group present
	sample + 1 gm m –		
	dinitrobenzene followed by 5		
	ml NaOH solution and shake		
3	Sodium nitroprosside Test	Wine red colour	Ketonic group is
	Take 1ml of sodium		present
	nitroprusside solution in a test		
	tube + sample + NaOH solution		
	dropwise		

Result : - The given organic compound contains **Ketonic** (>C=0) group.

CH CH CH CHNO. NO Acetaldehyde 2, 4-Dinitrophenyl Acetone-2, 4-dinitrophenyl hydrazine hydrazone $\mathrm{CH_3COCH_3} + \mathrm{OH^-} \longrightarrow \mathrm{CH_3COCH_2^-} + \mathrm{H_2O}$ $Fe(CN)_5NO]^{2-} + CH_3COCH_2^- \longrightarrow [Fe(CN)_5NO. CH_3COCH_2]^3$ **Red** colouration Nitroprusside ion

Aim : To identify functional group in the given organic compound. **Apparatus :** Test tube, Glass Rod, Beaker, Dropper, Filter paper etc. **Chemicals: -** Litmus paper, sodium Bicarbonate, Ethyl alcohol , conc. H₂So₄

Physical Properties :

(i)	Physical state	\rightarrow	White solid
(ii)	Smell	\rightarrow	Vinegar like
(iii)	Colour	\rightarrow	White
(iv)	Solubility in water	\rightarrow	Soluble.
(v)	Flame Test	\rightarrow	Aliphatic (Blue flames)

TEST FOR FUNTIONAL GROUP :-

S.N	EXPERIMENT	OBSERVATION	INFERENCE
1	Litmus Test : Place a dropper a crystal of the compound on moistre blue litmus paper	It turns red	Inference Carboxylic group present
2	Sodium Bicarbonate Test : Take 5 ml of dil soln. of sodium bicarbonate in test tube + small quantity of substance	Brisk effervesence due to liberation of Co ₂	Carboxylic group present
3	Ester Test : little sample in test tube + 5 drops of ethyl alcohol followed by 2 drops of conc. H_2 So ₄	Pleasant fruity smell due to formation of ester	Carboxylic group is present

Result : - The given organic compound contains **Carboxylic** (-COOH) group.

RCOOH + NaHCO₃- \rightarrow RCOONa + CO₂ \uparrow Carboxylic (Effervescence) acid H,SOA RCC J_2H_5 Ester Carboxylic (Fruity smell) acid

Aim : To identify functional group in the given organic compound. **Apparatus :** Test tube, Glass Rod, Beaker, Dropper, Filter paper etc. **Chemicals: -** Litmus paper, Conc. HCL, sodium nitrate NaOH.

Physical Properties :

Physical state Liquid (i) Smell Rotten fish smell (ii) Colour **Reddish Brown** (iii) Solubility in water In Soluble. (iv) \rightarrow Flame Test Aromatic (Yellow flames) (v) \rightarrow

TEST FOR FUNTIONAL GROUP :-

S.N	EXPERIMENT	OBSERVATION	INFERENCE
1	Solubility Test: 0.1 g	Compound dissolve	Amino group may be
	$compound + 2-3 cm^3 dil . HCl .$		present
2	Litmus Test :	It turns blue	Amino group be
	Take a little sample in a test tube		present
	and add red litmus solution		
3	Azodye test : sample + dissolve	Orange or red dye is	Amino group is
	it in conc. Hcl + water and cool	formed	present
	this solution into ice. + 1 gm		_
	$NaNo_2 + 5$ ml water and shake +		
	B naphthol + NaOH solution		

Result : - The given organic compound contains **Amino** (-NH₂) group.

HNO2 $C_6H_5N^+ \equiv NCl^-$ C₆H₅NH₂ HC Aniline Nitrous acid Benzene diazonium chloride $CH_3CH_2NH_2 + H_2O$ CH₂CH₂NH₃⁺ C6H5NH2 HNO. $C_6H_5N^+ \equiv NCI^-$ HC Aniline Nitrous acid Benzene diazonium chloride OH OH # NHC Benzene diazonium **B**-Napthol Orange-red ppt. chloride